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Abstract

We consider a chemotaxis system, on the whole space, without diffusive term for the chemical substance
and prove that even if the chemical sensitivity is large, there exist bounded global solutions, when the initial
data is sufficiently small.

Keywords Chemotaxis system, Bounded solutions
2010 Mathematics Subject Classification 92C17, 35B60, 35Q80

1 Introduction

The present article deals with a chemotaxis system

(K-S)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu =∆u − χ∇ ⋅ (u∇v
v
) , t > 0, x ∈ Rn

∂tv = uvλ, t > 0, x ∈ Rn

u(0, x) = u0(x) v(0, x) = v0(x), x ∈ Rn.

Here, u indicates the unknown cell density of the chemotactic species, v the unknown density of non-diffusive
chemical substance, which is produced by the species. χ > 0 is the chemotactic sensitivity and λ is the growth

rate of chemical. The term
∇v
v
= ∇ log v means that the magnitude of the sensation of cell from the chemical

substance follows from the Weber-Fechner law. This system is a particular case of Keller-Segel system [6], [7]
and was derived as a model of self-reinforced random walks [13], [11]. Also, the similar systems are applied as
mathematical model as haptotaxis and angiogenesis models, for example [3], [4]. One of main features of the
system is that ODE does not contain ∆v, that is, the absence of diffusion term for the chemical. There are many
papers which studied Keller-Segel systems with the diffusion term in the second equation. Levine and Sleeman
[9] investigated finite time blow-up phenomena for the system (K-S) with λ = 1 in one dimensional case. D. Li,
K. Li and Zhao [10] treated with the case λ = 1 in which the system is transformed into a hyperbolic-parabolic
system through the transform V = −∇v

v
, and constructed local and global solutions in Sobolev spaces with

positive smoothness. In smooth bounded domains in Rn with λ ≤ 1, Rascle [12] and Yang, Chen and Liu [17]
showed the existence of global solutions. Corrias, Perthame and Zaag [3], [4] studied the same topics in a general
system with λ /= 1. In [14], asymptotic behavior of radial symmetric solutions is studied. When λ ∈ [0,1) and
n = 1, Kang, Stevens and Velázquez [5] proved that for some initial data the corresponding solutions u tends to
Dirac mass as t→∞.

For simplicity, we restrict us to the case λ /= 1 in this article. Through transformations

z = v1−λ

1 − λ
with θ = χ

1 − λ
∈ R,

(K-S). is turned into

(Eθ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu =∆u − θ∇ ⋅ (u∇z
z
) , x ∈ Rn, t > 0

∂tz = u, x ∈ Rn, t > 0

u(0, x) = u0(x) z(0, x) = z0(x)(=
v0(x)1−λ

1 − λ
) , x ∈ Rn.
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In this article, we assume the lower bound

∣z0(x)∣ ≥ c0 > 0 for all x ∈ Rn, (1)

from a technical reason. Owing to the absence of the diffusive term ∆z in ODE, the spatial regularity of z and
∇z is not better than that of z0 and z0, respectively. Also, z is monotonically increasing for time, thus L∞(Rn)
norm of 1/z is a bounded function of t, whenever u or t is small as compared with c0. This L∞((0, T ) ×Rn))
boundedness of 1/z will be repeatedly used in this article. Of course, z is represented by u. The structure of
the representation and the boundedness of 1/z imply that some Besov norms of 1/z are bounded by the same
norms of z.

Recently, Ahn and Kang [1] gave a global existence theorem for (Eθ) on smooth, bounded domains of
arbitrary dimensions with θ ∈ (0,1] and u0, z0 ∈ L∞ ∩W 1,p, (p > n). Their solutions (u, z) belong to the class
L∞(0, T ;L∞) ∩ Lp(0, T ;W 1,p) for all T < ∞, which means that the chemotactic collapse does not occur in
finite time. They also assumed the lower bound (1) to control the inverse 1/z in the non-linear term. Using a
Lyapunov function and the boundedness of 1/z, which is derived from (1), they obtained an inequality:

∂tz(t, x) ≤ cz(t, x)θ.

Their condition on θ ensures the boundedness of z, and then u. The purpose of the present article is to give
an existence theorem for large θ, under the smallness condition on the initial data (u0, z0). But we need
the restriction on the dimension: n ≥ 3. For large θ, it seems that their [1] method is failure. Our method
differs from them. To achieve the result, we establish two existence theorems. In the former, we construct
global-in-time solutions, having uniformly bounds for time, see Proposition 1.1. But, the solutions may be
unbounded. The condition n ≥ 3 is used to show this proposition. The later states the existence of local-in-time
“bounded”solutions, see Proposition 1.2. Smallness condition on the initial data yields the consistency between
these solutions in short time interval. Combining these propositions, it turns out that our global solutions are
spatial bounded in a time interval. We apply estimates in Proposition 1.1 as a priori ones and then the spatial
boundedness is extended. In [15], the authors constructed global solutions of (Eθ) for all θ. But properties of
the solutions are not enough to apply the argument in this paper.

Solutions we will construct are mild solutions, more precisely, we construct solutions to the integral equations;

(I.E.) u(t) = et∆a − θD[u](t),

where

D[u](t) =
t

∫
0

e(t−τ)∆∇ ⋅ F (τ)dτ, F (τ) = Fu(τ) = u(τ)
∇z(τ)
z(τ)

and

z(t) = z0 +
t

∫
0

u(τ)dτ.

Our existence theorems involve several norms:

∥u∥XT
=

5

∑
j=1
∥u∥Xj

T
and ∥u∥YT

=
7

∑
j=1
∥u∥Y j

T

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥u∥X1
T
= ∫

T

0
∥u(t)∥L∞dt, ∥u∥X2

T
= ∫

T

0
∥u(t)∥Ḃs

p,∞
dt,

∥u∥X3
T
= sup

t<T

XXXXXXXXXXXX
∇

t

∫
0

u(τ)dτ
XXXXXXXXXXXXLq

, ∥u∥X4
T
= ∫

T

0
∥∇u(t)∥L∞dt,

∥u∥X5
T
= sup

t<T

XXXXXXXXXXXX
∇

t

∫
0

u(τ)dτ
XXXXXXXXXXXXḂs

p,∞

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥u∥Y 1
T
= sup

t<T
∥u(t)∥L∞ , ∥u∥Y 2

T
= sup

t<T
∥u(t)∥L1 ,

∥u∥Y 3
T
= sup

t<T
ts/2∥u(t)∥Ḃs

∞,∞
, ∥u∥Y 4

T
= sup

t<T
ts/2∥u(t)∥Ḃs

1,∞
,

∥u∥Y 5
T
= sup

t<T
t1/2∥∇u(t)∥L∞ , ∥u∥Y 6

T
= sup

t<T
t1/2∥∇u(t)∥L1 ,

∥u∥Y 7
T
= sup

t<T
t(1+s)/2∥∇u(t)∥Ḃs

p,∞
.
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XT and YT norms are used in Propositions 1.1 and 1.2, respectively. For simplicity, we use the following
notations: ∥ ⋅ ∥Xa,b,⋯

T
= ∥ ⋅ ∥Xa

T
+ ∥ ⋅ ∥Xb

T
+⋯ and ∥ ⋅ ∥Y a,b,⋯

T
= ∥ ⋅ ∥Y a

T
+ ∥ ⋅ ∥Y b

T
+⋯. Further, the following norms are

used for the initial data;

∥z0∥X = ∥z0∥Y + ∥∇z0∥Lq , ∥z0∥Y = ∥z0∥Ḃs
p,∞
+ ∥∇z0∥L∞∩Ḃs

p,∞
,

and
∥(u0, z0)∥X = ∥u0∥L1∩L∞ + ∥z0∥X , ∥(u0, z0)∥Y = ∥u0∥L1∩L∞ + ∥z0∥Y .

Our main result reads as follows and asserts that even if θ is large, when the initial data (u0, z0) is sufficiently
small, spatial bounded solutions globally exist.

Theorem 1.1. Let n ≥ 3, 1 < q < n < p < ∞, s ∈ (n/p,1), θ ∈ R and c0 > 0. There exists small δ > 0 such
that for any initial data (u0, z0) satisfying ∥(u0, z0)∥X ≤ δ, z0 ∈ L1

loc and (1), (I.E.) admits a global solution u
fulfilling ∥u∥X∞ ≤ cδ and ∥u∥YT

<∞ for all T <∞. Especially, ∥u(t)∥L∞ ≤ cect for all t > 0.

Remark 1.1. In addition, if z0 ∈ L∞, then we can show the uniform bound for z;

∥z(t)∥L∞ ≤ ∥z0∥L∞ + ∥u∥X1
∞

for all t > 0.

The following two theorems are used in the proof of Theorem 1.1. The former is global existence theorem for
the our system (Eθ) that does not ensure the spatial boundedness of solutions. One of merits of such solutions
is several uniformly bounds for time, which are applied as a priori estimates to extend local solutions in the
proof of Theorem 1.1. Proposition 1.1 is a modification of a result in our previous work [15]. The previous
estimates are not enough for the present argument.

Proposition 1.1. Let n ≥ 3, 1 < q < n < p <∞, s ∈ (n/p,1), θ ∈ R and c0 > 0. There exists δ = δ(n, p, q, θ, c0) > 0
such that for any T ∈ (0,∞], u0 ∈ L1 ∩L∞ and z0 ∈ L1

loc satisfying (1) and ∥(u0, z0)∥X ≤ δ, then (I.E.) admits a
unique global solution u in the closed ball

Bδ(XT ) = {u ∈ L1(0, T ;L∞); ∥u∥XT
≤ 2CXδ} ,

with a constant CX ≥ 1, for which ∥e⋅∆u0∥XT
≤ CX∥u0∥L1∩L∞ holds.

Remark 1.2. 1. The restriction on dimension n steams from the following: if n = 1,2,

∥e⋅∆u0∥X1
∞
=
∞

∫
0

∥et∆u0(t)∥L∞dt ≈ ∥u0∥Ḃ−2∞,1
=∞,

for u0 ∈ L1 ∩L∞ in general.

2. z0(x) ∶= c(e−∣x∣
2

+ 1) with small positive c satisfies conditions in Theorem 1.1.

The later is a local existence theorem, in which solutions are local in time but spatial bounded. Proposition
1.2 is also a modification of a result in our previous work [15].

Proposition 1.2. Let n ≥ 1, p ∈ (n,∞), s ∈ (n/p,1), θ ∈ R and c0 > 0. For any (u0, z0) satisfying ∥(u0, z0)∥Y <
∞, z0 ∈ L1

loc and (1), there exists a constant C > 0 so that (I.E.) admits a unique local solution u up to

T = Cmin (∥(u0, z0)∥−1Y , ∥(u0, z0)∥−2/(1−n/p)Y , ∥(u0, z0)∥−4/(1−n/p+s)Y ) ,

in the closed ball B(YT ) defined by

{u ∈ BC((0, T ) ×Rn) ∩BC((0, T );L1 ∩L∞); ∥u∥YT
≤ 2CY ∥(u0, z0)∥Y } ,

with a constant CY ≥ 1, for which ∥e⋅∆u0∥YT
≤ CY ∥u0∥L1∩L∞ holds. BC means a space of all bounded continuous

functions.

This paper is organized as follows. In next section, we recall the definition and equivalence norms of
(homogeneous) Besov space and collect our basic estimates. Applying Propositions 1.1 and 1.2, we prove main
result in Section 3. The propositions are proved in Sections 4 and 5, respectively.
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2 Preliminaries

Throughout this paper we use the following notations. A ≈ B means c1B ≤ A ≤ c2B with some c1, c2 > 0. In
what follows, c denotes a constant that is independent of the functions involved, which may differ from line to
line.

Let us recall the definition of Besov spaces. We fix φ ∈ S(Rn) satisfying supp φ ⊂ {1/2 ≤ ∣ξ∣ ≤ 2} and

∑
j∈Z

φ( ξ
2j
) = 1 for ξ ∈ Rn/{0}, and then φj(D)f = F−1 [φ(

⋅
2j
) f̂(⋅)], where F =ˆis Fourier transform and F−1 =ˇ

is its inversion transform.

Definition 2.1. Let 0 < p, q ≤ ∞ and s ∈ R. Besov space Ḃs
p,q is defined to be the space of f ∈ S ′ modulo

polynomials such that

∥f∥Ḃs
p,q
= ∥{2js∥φj(D)f∥Lp}

j∈Z∥lq <∞.

We make use of two equivalence norms of Besov spaces established by Triebel [16]. The first one is the
following:

∥f∥Ḃs
p,∞
≈ sup

h∈Rn/{0}

∥f(⋅ + h) − f(⋅)∥Lp

hs
, (2)

where 1 ≤ p <∞ and 0 < s < 1.
Triebel [16] also showed that Besov spaces are also characterized by means of the heat semigroup et∆: with

a non-negative integer m > s/2

∥f∥Ḃs
p,q
≈
⎛
⎝

∞

∫
0

(tm−s/2∥(−∆)met∆f∥Lp)
q dt

t

⎞
⎠

1/q

, q <∞,

∥f∥Ḃs
p,∞
≈ sup

t<∞
tm−s/2∥(−∆)met∆f∥Lp .

(3)

Of course, et∆f is defined by
et∆f(x) = f ∗G√t,

where gt(x) = t−ng(x/t) and G(x) = (4π)−n/2e−∣x∣
2/4.

We handle the nonlinear term by Leibniz’s rule. Since Lemma 2.1 is a well-known result, we omit the proof.
For example, it can be verified by using the paraproduct formula due to Bony [2].

Lemma 2.1. For s > 0 and 1 ≤ q ≤ p ≤∞,

∥fg∥Ḃs
q,∞
≤ c∥f∥Ḃs

q,∞
∥g∥L∞ + ∥f∥Lp′ ∥g∥Ḃs

p,∞
,

where 1/p′ = 1/q − 1/p.

Decay estimates of the heat semigroup on Besov spaces are basic tools in Sections 4 and 5.

Lemma 2.2 ([8]). If 1 ≤ q ≤ p ≤∞ and −∞ < β < α <∞, it follows

∥et∆f∥Ḃα
p,1
≤ ct−n(1/p−1/q)/2−(α−β)/2∥f∥Ḃβ

q,∞
.

The following estimate is applied in estimates of X5
T norm.

Lemma 2.3 ([15]). Let n ≥ 1, F = (f1,⋯, fn) and r ∈ (1,∞). For any T ∈ (0,∞], it holds
XXXXXXXXXXXXX

T

∫
0

∇
t

∫
0

e(t−τ)∆∇ ⋅ F (τ)dτdt
XXXXXXXXXXXXXLr

≤ c
T

∫
0

∥F (τ)∥Lrdτ.

To control Y 7
T norm in Proposition 1.2, we make use of next lemma.

Lemma 2.4 ([15]). For any s ∈ R, 1 ≤ p ≤∞ and 0 ≤ t0 < t <∞, it holds

XXXXXXXXXXXXX

t

∫
t0

e(t−τ)∆∇ ⋅ F (τ)dτ
XXXXXXXXXXXXXḂs

p,∞

≤ c sup
t0<τ<t

∥F (τ)∥Ḃs−1
p,∞

.
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Remark 2.1. This estimate is a kind of end-point estimates. Taking the Besov norm inside the time integral
seems to violate the inequality, because such estimate yields a strong singularity at τ = t:

∥e(t−τ)∆∇ ⋅ F (τ)∥Ḃs
p,∞
≤ c(t − τ)−1∥F (τ)∥Ḃs−1

p,∞
.

To avoid this singularity, the proof applied the theory of real interpolation, see [15] for the detail. This is the
reason why we use Besov spaces instead of Sobolev spaces.

3 Proof of Theorem 1.1

Here, we give a proof of Theorem 1.1 by using Propositions 1.1 and 1.2.

From Propositions 1.1 and 1.2, there exist δ > 0 and T ∈ (0,∞) for which the statements of both propositions
hold. Let u ∈ Bδ(X∞) and v ∈ B(YT ) denote global and local solutions with the initial data (u0, z0) constructed
in the propositions, respectively. It is not hard to see that the local solution v also belongs to XT and has the
inequalities:

∥v∥XT
≤ cmax (T,T (1−s)/2) ∥v∥YT

≤ cmax (T,T (1−s)/2) ∥(u0, z0)∥Y .

This means that there is small T0 ∈ (0, T ), depending on δ and ∥(u0, z0)∥Y , so that v ∈ Bδ(XT0). From the
uniqueness in Bδ(XT0) in Proposition 1.1, it holds u(t, x) = v(t, x) a.e. (t, x) ∈ (0, T0) × Rn, which implies
u ∈ L∞((0, T0) ×Rn). Because the set E defined by

{T ∈ (0,∞];u ∈ BC((0, T ) ×Rn)∩BC((0, T );L1 ∩L∞)
with ∥u∥YT ′ <∞ for all T ′ ∈ (0, T )}

is not empty, we define Tmax ∶= supE ∈ [T0,∞]. Here we assume that Tmax <∞.
For any T ∈ (0, Tmax), because u(T ) ∈ L1∩L∞ and z(T ) ∈ Ḃs

p,∞ with ∇z(T ) ∈ L∞∩Ḃs
p,∞ and ∣z(T,x)∣ ≥ c > 0

for all x ∈ Rn, from Proposition 1.2 and the maximality of Tmax, we can see that

c∥(u(T ), z(T ))∥−αY ≤ Tmax − T

for α ∈ {1, 2/(1 − n/p), 4/(1 − n/p + s)}, which implies

lim sup
T↗Tmax

∥(u(T ), z(T ))∥Y =∞. (4)

On the other hand, using the uniform bound for time: ∥u∥X∞ ≤ 2CXδ, we can deny (4). Indeed, firstly, the
mass is conserved: ∥u(T )∥L1 = ∥u0∥L1 . Since

∥u(T )∥L∞ ≤ ∥u0∥L∞ +
T

∫
0

h(T − t)∥u(t)∥L∞dt,

where h(T − t) = c(T − t)−1/2(∥∇z0∥L∞ + ∥u∥X4
∞
), applying a version of Gronwall’s inequality, one obtains the

uniform bound of ∥u(T )∥L∞ ;

∥u(T )∥L∞ ≤ c∥u0∥L∞ exp (c(∥∇z0∥L∞ + ∥u∥X4
∞
)2T) for all T ∈ (0, Tmax).

Moreover, it holds
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥z(T )∥Ḃs
p,∞
≤ ∥z0∥Ḃs

p,∞
+ ∥u∥X2

∞
,

∥∇z(T )∥L∞ ≤ ∥∇z0∥L∞ + ∥u∥X4
∞

and

∥∇z(T )∥Ḃs
p,∞
≤ ∥∇z0∥Ḃs

p,∞
+ ∥u∥X5

∞
.

Hence,
sup

T<Tmax

∥(u(T ), z(T ))∥Y <∞

is conformed. Then Tmax =∞ and we have for all t > 0, ∥u(t)∥L∞ ≤ cect.
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4 Proof of Proposition 1.1

Define a map Φ by
Φ[u](t) = et∆u0 − θD[u](t).

We show that Φ is a contraction mapping from Bδ(XT ) to itself with some δ. Fix u ∈ Bδ(BT ).
First, take δ ∈ (0, c0/(4CX)). See Lemma 4.1 below for CX . We are able to see from the triangle inequality:

sup
t<T
∥ 1

z(t)
∥
L∞
≤ 2

c0
. (5)

Besov norms of 1/z are also controlled:

∥ 1

z(t)
∥
Ḃs

p,∞

≤ c∥z(t)∥Ḃs
p,∞

, (6)

which follows from (2) and (5).

4.1 Linear estimates

Lemma 4.1. There exists a constant CX > 0 so that for any T ∈ (0,∞], it holds

∥e⋅∆u0∥XT
≤ CX∥u0∥L1∩L∞ .

Proof. Smoothing estimates for the heat semigroup Lemma 2.2 ensure this inequality.

4.2 Nonlinear estimates

Smoothing estimates for the heat semigroup also yield

3

∑
j=1
∥D[u]∥Xj

T
≤ c

T

∫
0

∥F (t)∥Lq∩Lpdt.

Applying the characterization of Besov norms in terms of the heat semigroup (3), one has

∥D[u]∥X4
T
≤

T

∫
0

T−τ

∫
0

∥∇et∆∇ ⋅ F (τ)∥L∞dtdτ ≤ c
T

∫
0

∥F (t)∥Ḃ0
∞,1

dt.

We use Lemma 2.3 and see

∥D[u]∥X5
T
= sup

t<T
sup
k∈Z

2ks
XXXXXXXXXXXX
∇

t

∫
0

τ

∫
0

e(τ−σ)∆∇ ⋅ ϕk(D)F (σ)dσdτ
XXXXXXXXXXXXLp

≤ c
T

∫
0

∥F (t)∥Ḃs
p,∞

dt.

Because the condition n/p < s ensures the embedding Lq ∩ Ḃs
p,∞ ↪ Ḃ0

∞,1, we have to control the three norms;

Lq, Lp and Ḃs
p,∞. From Hölder inequality, (5) and interpolation inequalities, the first two norms are bounded

as follows
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
T

0
∥F (t)∥Lqdt ≤ c∥u∥X1

T
(∥∇z0∥Lq + ∥u∥X3

T
)

∫
T

0
∥F (t)∥Lpdt ≤ c∥u∥X1

T
(∥∇z0∥Lq∩L∞ + ∥u∥X3,4

T
).

Combining Lemma 2.1 and (6) derives the estimation

∥F (t)∥Ḃs
p,∞
≤ c∥u(t)∥Ḃs

p,∞
(∥∇z0∥L∞ + ∥u∥X4

T
)

+ c∥u(t)∥L∞(∥∇z0∥Ḃs
p,∞
+ ∥u∥X5

T
)

+ c∥u(t)∥L∞(∥∇z0∥L∞ + ∥u∥X4
T
)(∥z0∥Ḃs

p,∞
+ ∥u∥X2

T
).
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Therefore, we have

T

∫
0

∥F (t)∥Lq∩Lp∩Ḃs
p,∞

dt ≤ c∥u∥XT
(∥z0∥X + ∥u∥XT

)

+ c∥u∥XT
(∥z0∥X + ∥u∥XT

)2

≤ cC2
Xδ2 + cC3

Xδ3.

Thus, for small δ, Φ[u] ∈ Bδ(XT ).
Next, we verify the contraction property of Φ. For u, v ∈ Bδ(BT ), we decompose

Φ[u](t) −Φ[v](t) = −θ
t

∫
0

∇e(t−τ)(A(τ) +B(τ) +C(τ))dτ,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(τ) = −u(τ) − v(τ)
w(τ)

∇w(τ),

B(τ) = u(τ)(z(τ) −w(τ))
z(τ)w(τ)

∇w(τ),

C(τ) = −u(τ)
z(τ)

∇(z(τ) −w(τ))

and w(τ) = z0 + ∫
τ

0
v(σ)dσ. Because

∥Φ[u] −Φ[v]∥XT
≤ c∣θ∣

T

∫
0

∥A(t) +B(t) +C(t)∥Lq∩Lp∩Ḃs
p,∞

dt,

it remains to give controls of the three norms. It is not hard to see that

T

∫
0

∥A(t) +B(t) +C(t)∥Lq∩Lpdt ≤ c(CXδ +C2
Xδ2)∥u − v∥XT

and
T

∫
0

∥A(t) +C(t)∥Ḃs
p,∞

dt ≤ c(CXδ +C2
Xδ2)∥u − v∥XT

.

We use Lemma 2.1 and obtain

∥B(t)∥Ḃs
p,∞
≤ c∥u(t)∥Ḃs

p,∞
(∥∇z0∥L∞ + ∥v∥X4

T
)∥u − v∥X1

T

+ c∥u(t)∥L∞
⎛
⎝
∥ ∇w(t)
z(t)w(t)

∥
Ḃs

p,∞

+ ∥∇w(t)∥L∞
⎞
⎠
∥u − v∥X1,2

T

≤ c (CXδ∥u(t)∥Ḃs
p,∞
+C2

Xδ2∥u(t)∥L∞) ∥u − v∥XT
.

Here we have used

∥ 1

z(t)w(t)
∥
Ḃs

p,∞

≤ c(∥z(t)∥Ḃs
p,∞
+ ∥w(t)∥Ḃs

p,∞
) ≤ cCXδ.

Taken together, one gets
∥Φ[u] −Φ[v]∥XT

≤ c(C2
Xδ2 +C3

Xδ3)∥u − v∥XT
,

which shows that for small δ, Φ is a contraction mapping from Bδ(XT ) to itself. The proof is completed.

5 Proof of Theorem 1.2

We show that Φ is also a contraction mapping on B(YT ) for T > 0 as in Proposition 1.2. Fix u ∈ B(YT ). Taking
T ≤ c0/(4CY ∥(u0, z0)∥Y ), one can obtain the bound (5), again.
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5.1 Linear estimates

Linear estimates can be derived from Lemma 2.2.

Lemma 5.1. There is a constant CY ≥ 1, for which

∥e⋅∆u0∥YT
≤ CY ∥u0∥L1∩L∞ for all T ∈ (0,∞].

5.2 Nonlinear estimates

For simplicity, let RY = 2CY ∥(u0, z0)∥Y . Applying Lemmas 2.2 and 2.4, we can see that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥D[u]∥Y 1
T
∩Y 2

T
≤ c sup

t<T

t

∫
0

(t − τ)−1/2∥F (τ)∥L1∩L∞dτ,

∥D[u]∥Y 3
T
∩Y 4

T
≤ c sup

t<T
ts/2

t

∫
0

(t − τ)−1/2∥F (τ)∥L1∩L∞dτ,

∥D[u]∥Y 5
T

≤ c sup
t<T

t1/2
t

∫
0

(t − τ)−n/(2p)−(2−s)/2∥F (τ)∥Ḃs
p,∞

dτ,

∥D[u]∥Y 6
T

≤ c sup
t<T

t1/2
t

∫
0

(t − τ)−(2−s)/2∥F (τ)∥Ḃs
1,∞

dτ and

∥D[u]∥Y 7
T

≤ c sup
t<T

t(1+s)/2{
t/2

∫
0

(t − τ)−(2+s)/2∥F (τ)∥Lpdτ

+ sup
t/2<τ<t

∥F (τ)∥Ḃs
p,∞
}.

(7)

As is the case with Proposition 1.1, it holds from Lemma 2.1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥F (τ)∥L1∩L∞ ≤ c (1 + τ1/2) ∥u∥Y 1,2
T
(∥∇z0∥L∞ + ∥u∥Y 5

T
),

∥F (τ)∥Ḃs
p,∞

≤ cτ−s/2(1 + τ1/2)∥u∥Y 1,3,4
T
(∥∇z0∥L∞∩Ḃs

p,∞
+ ∥u∥Y 5,7

T
)

+c (1 + τ (3−s)/2) ∥u∥Y 1
T
(∥∇z0∥L∞ + ∥u∥Y 5

T
)(∥z0∥Ḃs

p,∞
+ ∥u∥Y 3,4

T
),

∥F (τ)∥Ḃs
1,∞

≤ cτ−s/2(1 + τ1/2)∥u∥Y 1,2,4
T
(∥∇z0∥L∞∩Ḃs

p,∞
+ ∥u∥Y 5,7

T
)

+c(1 + τ (3−s)/2) ∥u∥Y 1,2
T
(∥∇z0∥L∞ + ∥u∥Y 5

T
)(∥z0∥Ḃs

p,∞
+ ∥u∥Y 3,4

T
).

(8)

Substituting these estimates into (7), one has

∥D[u]∥YT
≤ cT (1−n/p)/2 (1 + T (1+n/p)/2)R2

Y

+ cT (1+s−n/p)/2 (1 + T (3+n/p−s)/2)R3
Y .

Here, we need the condition n/p < s < 1. Remark that Y 6
T norm does not appear in the right hand sides of (8).

This norm is needed in the proof of Theorem 1.1. Thus, we can find a constant C > 0, depending on c0 and ∣θ∣,
so that if

T = Cmin (∥(u0, z0)∥−1Y , ∥(u0, z0)∥−2/(1−n/p)Y ) ,

then ∥Φ[u]∥YT
≤ 2CY ∥(u0, z0)∥Y .

Next, we check the continuity Φ[u] ∈ BC((0, T );L∞). The continuity of the linear term is derived from

∥et∆u0 − es∆u0∥L∞ ≤ ∥G√t −G√s∥L1∥u0∥L∞ → 0 as ∣t − s∣↘ 0.

To verify the right continuity of the Duhamel term, we write for ε > 0

D[u](t + ε) −D[u](t) =
t

∫
0

e(t−τ)∆ (eε∆ − Id)∇ ⋅ F (τ)dτ

−
t+ε

∫
t

e(t+ε−τ)∆∇ ⋅ F (τ)dτ =∶ I(ε) + II(ε).
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It is not hard to see that for any f ∈ L∞ ∩ Ḃs
∞,∞, e

t∆f → f in L∞ as t↘ 0. Since F ∈ L∞ ∩ Ḃs
∞,∞, ∥I(ε)∥L∞ → 0

as ε↘ 0 from Lebesgue’s dominated convergence theorem. On the other hand, it follows

∥II(ε)∥L∞ ≤ c
t+ε

∫
t

(t + ε − τ)−1/2∥F (τ)∥L∞dτ

≤ c (1 + (t + ε)1/2) ε1/2R2
Y → 0 as ε↘ 0.

To show the left continuity, we write

D[u](t) −D[u](t − ε) = −
t−ε

∫
0

(e(t−τ)∆ − e(t−ε−τ)∆)∇ ⋅ F (τ)dτ

−
t

∫
t−ε

e(t−τ)∆∇ ⋅ F (τ)dτ =∶ I(ε) + II(ε).

We decompose the first term as follows:

e(t−τ)∆∇ ⋅ F (τ) − e(t−ε−τ)∆∇ ⋅ F (τ)

= (t − τ)−1/2F ∗ (∇G)√t−τ − (t − ε − τ)
−1/2F ∗ (∇G)√t−ε−τ

= (t − τ)−1/2F ∗ [(∇G)√t−τ − (∇G)√t−ε−τ ]

+ [(t − τ)−1/2 − (t − ε − τ)−1/2]F ∗ (∇G)√t−ε−τ

=∶ P +Q

and can see that both terms go to zero:

XXXXXXXXXXXX

t−ε

∫
0

Pdτ

XXXXXXXXXXXXL∞
≤ c

t−ε

∫
0

τ−1/2 ∥(∇G)√τ − (∇G)√τ+ε∥L1
dτ

× sup
0<t<T

∥F (t)∥L∞ → 0 as ε↘ 0

and

XXXXXXXXXXXX

t−ε

∫
0

Qdτ

XXXXXXXXXXXXL∞
≤ c

t−ε

∫
0

(τ−1/2 − (τ + ε)−1/2)dτ sup
0<t<T

∥F (t)∥L∞

→ 0 as ε↘ 0.

Finally,

∥II(ε)∥L∞ ≤ c
t

∫
t−ε

(t − ε)−1/2dτ sup
0<t<T

∥F (t)∥L∞

≤ cε1/2 sup
0<t<T

∥F (t)∥L∞ → 0 as ε↘ 0,

hence, Φ[u] ∈ BC((0, T );L∞). The same argument above yields Φ[u] ∈ BC((0, T );L1) and thus Φ[u] ∈ B(YT ).

To end the proof, we verify that Φ is a contraction mapping from B(YT ) to itself. For simplicity, let
W (t) = A(t) +B(t) +C(t). The same argument above yields

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥W (τ)∥L1∩L∞ ≤ c [(1 + τ1/2)RY + τ (1 + τ1/2)R2
Y ] ∥u − v∥YT

∥W (τ)∥Ḃs
1,∞∩Ḃs

p,∞
≤ c[τ−s/2(1 + τ1/2)RY + (1 + τ (3−s)/2)R2

Y

+τ(1 + τ (3−s)/2)R3
Y ]∥u − v∥YT

.

Because (7) with Φ[u] −Φ[v] in the place of D[u] holds, it follows

∥Φ[u] −Φ[v]∥YT
≤ c[T (1−n/p)/2 (1 + T (1+n/p)/2)RY

+ T (1−n/p+s)/2 (1 + T (3+n/p−s)/2)R2
Y

+ T (3−n/p+s)/2 (1 + T (3+n/p−s)/2)R3
Y ]∥u − v∥YT

.
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Therefore, there is a constant C > 0, depending on c0 and ∣θ∣, so that if

T = Cmin (∥(u0, z0)∥−1Y , ∥(u0, z0)∥−2/(1−n/p)Y , ∥(u0, z0)∥−4/(1−n/p+s)Y ) ,

then ∥Φ[u] −Φ[v]∥YT
≤ 1/2∥u − v∥YT

. The proof is completed.
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