2022年確率論講演会

    2022年確率論講演会を下記の要領で開催いたします. 皆様のご参加をお待ちしております.

会場

  Zoomによるオンライン開催

  参加を希望される方は, 下記の開催日の前日までに謝賓(メール:bxie AT shinshu-u.ac.jp)あてご連絡お願いいたします. 参加希望のメールを頂いた方にはzoom情報をお送りします.

プログラム

 2022年1月5日(水)

  • 14:00 ~ 14:50   稲濱 譲 氏 (Yuzuru INAHAMA, 九州大学, Kyushu University)
        Large deviations for small noise hypoelliptic diffusion bridges on sub-Riemannian manifolds

    概要: In this talk we discuss a large deviation principle of Freidlin-Wentzell type for pinned hypoelliptic diffusion measures associated with a natural sub-Laplacian on a compact sub-Riemannian manifold. To prove this large deviation principle, we combine rough path theory, manifold-valued Malliavin calculus, and quasi-sure analysis (which is a potential theoretic part of Malliavin calculus).

 2022年2月3日(木)

  • 17:30 ~ 18:20   Ludovic Goudenège 氏 (CNRS FR-3487 & CentraleSupélec, Université Paris-Saclay)
        Invariant measure for Stochastic alpha-Navier-Stokes equation with trace-class noise

    概要: We will introduce the Lagrangian averaged version of the Navier-Stokes equation named alpha-Navier-Stokes model perturbed by a space-time noise of trace-class. Based on a priori estimates and compactness arguments, we can prove the existence and uniqueness of a strong probabilistic solution with continuous paths. The natural assumptions on the noise's covariance operator permit the Bismut-Elworthy formula. We can derive Strong Feller-type property, giving uniqueness of invariant measure in dimensions 2 and 3. This is joint work with Luigi Manca from, LAMA, CNRS UMR-8050, Université Paris-Est, France.

  • 18:30 ~ 19:20   Ludovic Goudenège 氏 (CNRS FR-3487 & CentraleSupélec, Université Paris-Saclay)
        Numerical approximation of stochastic alpha-Navier-Stokes equation

    概要: Following the existence of a strong solution for the stochastic alpha-Navier-Stokes equation, we propose a numerical scheme based on the finite element method to approximate the solution in some domain of 2 or 3 dimensions. We prove the convergence of the numerical scheme when the time step and the spatial mesh size converge to 0. Moreover, in a particular case, we can obtain the convergence of the numerical scheme when alpha converges to 0 to recover the classical stochastic Navier-Stokes equation in 2D domains. This is joint work with Jad Doghman from Fédération de Mathématiques de CentraleSupélec, CNRS FR-3487, Université Paris-Saclay, France.

 2022年2月10日(木)

  • 13:00~14:30   中川 秀敏 氏(Hidetoshi NAKAGAWA,一橋大学,Hitotsubashi University)
        数理ファイナンス入門~2項モデルからその先へ~

    概要: オプションのような金融デリバティブの価格付け理論を扱う「数理ファイナンス」について、 前半では、高校数学の範囲で理解できる「1期間2項モデル」を紹介し、そこに含まれる数理ファイナンスのエッセンスを概説する。 後半は、少し駆け足気味になると思うが、3項モデルやBlack-Scholes-Merton理論を含む連続時間モデル、 そして最新のXVAなどにも言及したいと思う。

  • 14:45~16:00   中川 秀敏 氏(Hidetoshi NAKAGAWA,一橋大学,Hitotsubashi University)
        情報アプローチによるデフォルト伝播モデルとデフォルトリスクのある債券の価格付け

    概要: 最初に、数理ファイナンスにおける「デフォルト(債務不履行)リスク」のモデルについて概説する。 その後、「情報アプローチ」と呼ばれるモデルに基づき、2つの企業(債務者)間のリスクに相互依存関係がある場合に、 それらが発行する割引債価格がどのようなダイナミクスで変動するかについて確率論の手法を用いて得た結果を紹介したい (高田英行氏(東邦大)との共同研究)。

 2022年2月16日(水)

  • 13:30 ~ 15:00   盛田 健彦 氏 (Takehiko MORITA,大阪大学,Osaka University )
        力学系と確率論 ---- エルゴード理論の視点から ----
  • 15:10 ~ 16:40   盛田 健彦 氏 (Takehiko MORITA,大阪大学,Osaka University )
        反射の法則を満たす力学系の数理

  • 17:30 ~ 18:20   Ludovic Goudenège 氏 (CNRS FR-3487 & CentraleSupélec, Université Paris-Saclay)
        Simulating intermittency by irregular noise in SDEs

    概要: When we aim at numerically describing the solution of Navier-Stokes, we need to add to the classical numerical schemes some expected physical behavior. In particular, if many particles are immerged in a fluid, they have to exhibit intermittency behavior in their statistical quantities of interest. The classical approach adds random noise in the deterministic path of the particles following the fluid in order to recover the intermittency. But classical Gaussian noises like Brownian motion are not enough irregular to describe all the statistical descriptors of intermittency. We propose a way to build a very singular noise that can recover the intermittency. Moreover, it is also highly efficient in numerical approaches. The idea consists in describing a large family of Gaussian noises in a unified framework that can have a singular limit. This framework supports the fractional Brownian motions with Hurst parameter in (0,1), but also the singular limit as H goes to 0. The next steps consist of mixing all these noises multiplicatively to create the well-known energy cascade in Kolmogorov's description of intermittency, whose expected mathematical object is the Gaussian Multiplicative Chaos. This is joint work with Alexandre Richard from Fédération de Mathématiques de CentraleSupélec, CNRS FR-3487, MICS, Université Paris-Saclay, France, and Roxane Letournel from EM2C, CNRS UPR-288, CentraleSupélec, Université Paris-Saclay, France.

  • 18:30 ~ 19:20   Martin Grothaus 氏 (Technische Universität Kaiserslautern)
        Hypocoercivity for non-linear infinite-dimensional degenerate stochastic differential equations

    概要: Motivated by problems from Industrial Mathematics we further developed the concepts of hypocoercivity. The original concepts needed Poincaré inequalities and were applied to equations in linear finite-dimensional spaces. Meanwhile we can treat equations in manifolds or even infinite dimensional spaces. The condition giving micro- and macroscopic coercivity we could relax from Poincaré to weak Poincaré inequalities. In this talk an overview and many examples are given.



支援

  当講演会は2021年度国立大学法人機能強化促進費事業(学部長裁量経費の枠)及び日本学術振興会科学研究費補助金  基盤研究(C) 20K03627(研究代表者: 謝賓)の支援を受けています.





過去の記録